0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.net files contain 11 or more of these vectors (there are 11 stimuli), along with data identifying the correct output. I have not included a .net file, as they can be quite large.
Results are displayed as follows:
######################### Welcome to NevProp #########################
NevProp started on Sun Jun 1 22:49:08 1997
Parameters read from file "set7.net"...
TRAINING set patterns: 44
TESTING set patterns: 11
InputUnits: 400 -- HiddenUnits: 120 -- OutputUnits: 11
SEED for initial random weights=61972; Using lrand48(),srand48().
IBMorDOS 0 UseQuickProp 1 EpochWiseUpdate 1
BestByCindex 0 MinEpochs 200 BeyondBestEpoch 2
WtRange 0.01 HyperErr 1 SigmoidPrimeOffset 0.1
Epsilon 0.1 SplitEpsilon 1 Momentum 0.1
Decay -0.001 ScoreThreshold 0.1
MaxFactor 1.75 ModeSwitchThreshold 0
*--------------------------------------------------------------------*
Epoch 0:
TRAINING: 0.00 %correct ; RMSErr=0.49890
TESTING: 0.00 %correct ; RMSErr=0.49888
*--------------------------------------------------------------------*
Epoch 5: Did QuickProp on 100.00 %, GradDesc on 0.00 % of weights.
TRAINING: 0.00 %correct ; RMSErr=0.29042
TESTING: 0.00 %correct ; RMSErr=0.29055
*--------------------------------------------------------------------*
Epoch 10: Did QuickProp on 100.00 %, GradDesc on 0.00 % of weights.
TRAINING: 0.00 %correct ; RMSErr=0.29018
TESTING: 0.00 %correct ; RMSErr=0.29041
... and so on.
I then entered the Testing %correct value into Excel and created the fine
graphs you'll find on the Charts & Tables page.